This quest 17

Your Roll No.....

Sr. No. of Question Paper: 4979

G

Unique Paper Code

42227929

Elements of Modern Physics

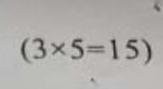
Name of the Paper

Name of the Course

B.Sc. (Prog.) Physical

Science - (DSE)

Semester

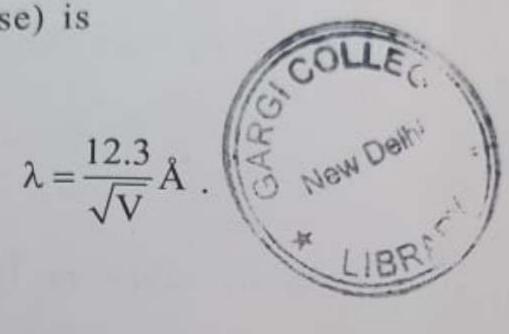

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- Attempt five questions in all.
- 3. Question No. 1 is compulsory.
- All questions carry equal marks.
- Non-programmable scientific calculators are allowed.

- (a) A metal whose work function is 4.2 eV is irradiated by radiation of 2000 Å wavelength. Find the maximum kinetic energy of emitted electrons.
- (b) Estimate the minimum uncertainty in the velocity of a proton confined in a nucleus of radius 10^{-14} m.
- (c) A wave function of a particle is given by $\psi(x) = Ae^{-kx}$ over the domain $0 \le x \le \infty$ (Assume $\psi(x) = 0$ outside this domain.), where A and k are constants. Find the normalization constant A in terms of k.
- (d) The wavefunction associated with a particle is


given as
$$\psi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{3\pi x}{L}\right)$$
 in region $0 \le x \le L$,

and $\psi(x) = 0$ otherwise. Calculate the probability

of finding the particle in interval
$$\frac{L}{3} \le x \le \frac{2L}{3}$$
.

(e) Write salient features of nuclear forces.

2. (a) Show that the de Broglie wavelength associated with electron which is accelerated from rest through a potential difference V volt (non-relativistic case) is

- (b) A photon of energy 3 keV collides with an electron initially at rest. If the photon emerges at an angle 60°, calculate the angle at which the electron recoils.
- (c) In a typical Davisson-Germer experiment, the first maxima in the diffraction pattern of 54 eV electrons was observed at φ = 60° from an unknown target, where φ is the angle between the incident and scattered beams. Determine the lattice constant D of the target.

- 3. (a) What is energy-time uncertainty principle? Discuss the gamma ray microscope thought experiment and explain how it validates Heisenberg's uncertainty principle.
 - (b) Calculate series limit wavelengths corresponding to Balmer and Paschen series of hydrogen spectra.

 (10,5)
- 4. (a) A particle of mass m is confined in a one dimensional infinitely rigid box having potential

$$V(x) = \begin{cases} \infty & x < -L/2 \\ 0 & -L/2 \le x \le L/2 \\ \infty & x > L/2 \end{cases}$$

Find the wave functions associated with the particle and its energy E.

(b) When light of given wavelength is incident on a metallic surface, the stopping potential for the photoelectrons is 3.2 V. If a second light source

whose wavelength is double that of the first is used, the stopping potential drops to 0.8 V.

Calculate the work function and the cut-off frequency of the metal.

(10,5)

(a) A particle of mass m and energy E < V₀ travelling along x-axis has a potential barrier defined by

$$V(x) = \begin{cases} 0 & x < 0 \\ V_0 & 0 < x < L \\ 0 & x > 0 \end{cases}$$

$$V(x) = \begin{cases} 0 & x < 0 \\ 0 & x > 0 \end{cases}$$

$$V(x) = \begin{cases} 0 & x < 0 \\ 0 & x > 0 \end{cases}$$

Write Schrodinger equations and their solutions for three regions, explain each term of the solutions.

(b) The transmission probability of an electron across a potential barrier of 10 eV is equal to 0.8%. If the width of the potential barrier is 0.6 nm, calculate the energy of incident electron using the approximate formula.

- (c) Calculate the de Broglie wavelength for a proton of kinetic energy 70 MeV. (5,5,5)
- (a) For following wavefunction

$$\Psi(x, t) = A(\sin kx + iB\cos kx)e^{-i\omega t}$$

where A, B, k, w are real constants. Calculate probability density and probability current density.

(b) The time-independent wave function of a particle of mass m moving in a potential $V(x) = \alpha^2 x^2$ is

$$\psi(x) = \exp\left(-\sqrt{\frac{m\alpha^2}{2\hbar^2}}x^2\right)$$
, α being a constant. Find the energy of the system.

(a) What is positive beta decay and negative beta decay? Explain giving examples.

(b) One gram of 226Ra has an activity of 1 curie. From this fact determine the half life of 226Ra. How much time will it take to decay 0.75 g of 226Ra?

(c) The nucleus 23 Ne decays by negative betaemission. Determine the maximum kinetic energy (in Joule) of the electrons emitted. Given that:

$$m(^{23}_{10}Ne) = 22.994466 u$$

$$m\binom{23}{11}Na) = 22.089770 u.$$
 (5,5,5)

ton

-5)

ite

le

is

 $h = 6.62 \times 10^{-34} \text{ J.s}$

$$c = 3 \times 10^8 \text{ m/s}$$

$$e = 1.6 \times 10^{-19} \text{ C}$$

$$m_e = 9.1 \times 10^{-31} \text{ kg}$$

$$m_n = 1.6749 \times 10^{-27} \text{ kg} = 1.00866 \text{ u}$$

$$m_p = 1.6726 \times 10^{-27} \text{ kg} = 1.00728 \text{ u}$$

$$R = 1.097 \times 10^7 \text{ m}^{-1}$$

